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Abstract

The growth of inviscid, subsonic disturbances in an external,
compressible boundary-layer flow is linked with the existence
of generalised points of inflection in the base flow. An invis-
cid neutral mode can propagate at a wavespeed equal to the
streamwise boundary-layer velocity at the generalised point of
inflection, and this neutral mode is adjacent to unstable modes
in wavenumber space. This is an extension of the classical
Rayleigh inflection point theorem in the incompressible theory.
A compressible, flat-plate boundary layer contains a single gen-
eralised point of inflection and hence is unstable in the inviscid
limit. Under the influence of a favourable pressure gradient and
a heated surface, the boundary-layer flow develops a velocity
overshoot; the streamwise velocity exhibits a local maximum.
This development also modifies the number and location of gen-
eralised points of inflection, and hence, the behaviour of invis-
cid disturbances. In this paper we summarise the linear stability
properties of boundary layers with a velocity overshoot and fo-
cus on the case where the first-mode disturbance is neutralised.

Introduction

The development of supersonic and hypersonic transport ve-
hicles requires a strong understanding of, and ability to con-
trol, compressible aero-thermodynamic flow phenomena. The
efficiency of these vehicles relies on delaying the transition
to turbulence in order to minimise drag and maintain stable
flight. Turbulence also increases thermal load on the vehicle
through aerodynamic heating that may damage surface materi-
als. Current hypersonic vehicles under development are slender
and wedge-shaped to minimise Görtler and centrifugal instabil-
ities that otherwise rapidly cause transition [1]. Transition in
the flow over these vehicles is triggered by the growth of two-
dimensional and oblique normal-mode (Tollmien-Schlichting)
disturbances that can be modelled with linear stability theory
[2]. The results can be used to find amplification rates along a
surface that can be correlated with transition using, for example,
the “eN method” [8]. In the large Reynolds number (inviscid)
limit, unstable modes are correlated with generalised points of
inflection [3], which are an extension of Rayleigh’s inflection
point theorem of the incompressible theory. In classical flat-
plate boundary layers there is a single generalised point of in-
flection, however, in some cases (see [6]) there may be zero or
multiple generalised points of inflection. In this paper we fo-
cus on boundary-layer profiles that contain a local maximum in
the streamwise velocity. These boundary layers can arise on a
flat plate when the surface is heated and there is a favourable
pressure gradient accelerating the flow [9].

Boundary-Layer Theory

The compressible boundary-layer equations governing flow in
the viscous flow close to the surface of an object a large
Reynolds-number external flow can admit self-similar solutions
that satisfy (

C f ′′
)′
+ f f ′′+β(1+ k)
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)
= 0, (1)
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Figure 1: Boundary-layer streamwise velocity profiles and gen-
eralised points of inflection (◦) for (a) M = 3, gw = 1.2, β = 0;
(b) M = 3, gw = 1.2, β = 0.05; (c) M = 6, gw = 1.6, β = 0.3.
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where primes denote differentiation to the Mangler-Levy-Lees
similarity variable

η ∝

∫ 1
T

dy,

f ′ is the streamwise velocity (nondimensionalised by
freestream velocity), g is the enthalpy (nondimensionalised by
freestream enthalpy), C = µ/T is the viscosity-temperature
ratio, Pr is the Prandtl number, β is the (Falkner-Skan)
pressure gradient parameter and 2k = (γ− 1)M2; where γ is
the heat-capacity ratio and M is the Mach number [7]. These
self-similar solutions are exactly valid in the case when β is
zero, Pr is unity or in the large-M limit. Solutions are subject
to the boundary conditions f (0) = f ′(0) = 0, g(0) = gw,
and f ′,g → 1 as η → ∞. When β is positive (representing
a favourable pressure gradient) and gw > gad (heated wall),
where gad (adiabatic wall enthalpy) is the value for which
g′(0) = 0, the streamwise velocity profile is not monotonic
and “overshoots” the freestream velocity. In this paper we
present results for Pr = 0.7 and a Sutherland Law viscosity-
temperature model. Some typical overshoot boundary-layer
velocity profiles are presented in figure 1.

In addition to the presence of the local maximum in the stream-
wise velocity f ′, hereafter referred to as u, also of interest are
the generalised points of inflection, which govern subsonic, in-
viscid instabilities. These are points where

I(y) =
d
dy

(
1
T

du
dy

)
= 0,

and the value of u at such points corresponds to the wavespeed
of an inviscid, neutral disturbance that can exist. In figures 2
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Figure 2: Plots of the inflectional velocities for the case M = 3,
gw = 1.2 and variable β.
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Figure 3: Plots of the inflectional velocities for the case M = 6,
gw = 1.6 and variable β.

and 3 the inflectional velocities for two families of overshoot
boundary layers are presented. When there is no velocity over-
shoot at β = 0, there is a single generalised point of inflection –
we will refer to the velocity at this family of generalised points
of inflection as cs. As β is increased, an additional generalised
point of inflection enters the boundary layer from the freestream
(y→ ∞) and a further one from the wall (y = 0). As the maxi-
mum streamwise velocity ūmax is very close to unity, so to is the
velocity at the freestream-originated generalised point of inflec-
tion. In the first case (figure 2) a local minimum in the distri-
bution of I(y) moves above I(y) = 0 at approximately β = 0.13
and two generalised points of inflection no longer exist. In the
second case (figure 3) three generalised points of inflection exist
for all positive values of β. As the wall enthalpy gw is increased
the former case evolves into the latter and the Mach number
has a similar effect. In this paper the former case is considered
to investigate the effect of removing two generalised points of
inflection.

Linear Stability Theory

The evolution of small-amplitude disturbances to a basic, steady

boundary layer may be investigated using linear stability theory.
For each quantity in the governing flow equations (continuity,
conservation of momentum, conservation of energy and equa-
tion of state) a small wavelike perturbation is added, i.e. for
u,

u = ū+ û(y)exp [i(αx+ζz−ωt)] ,

where ū is the basic state, û is the disturbance amplitude (vary-
ing in the normal co-ordinate y), α and ζ are the streamwise
(x-direction) and spanwise (z-direction) wavenumbers and ω

is the frequency. The resulting stability equations are an 8th
order system ordinary differential equations that constitute an
eigenvalue problem for the complex wave parameters α, ζ and
ω. These linearised stability equations are presented elsewhere
[5, 7]. Our interest in this paper is the large Reynolds-number
(inviscid) limit where the stability equations for a disturbance
travelling parallel to the boundary-layer flow may be written as

Dv̂(ū− c) = v̂(Dū)+ p̂
[
iα
(

T̂ −M2 (ū− c)2
)]

, (3)

Dp̂ =−v̂
(

iα(ū− c)
T̂

)
, (4)

where D denotes differentiation with respect to y and c = ω/α

is the wavespeed. The boundary conditions are v̂(0) = 0 and
v̂ bounded as y→ ∞. For a neutral disturbance the wave pa-
rameters are real and solutions to equations (3)-(4) are singular
at points y = yc where ū = c. The singularity is regularised if
I(yc) = 0 and 1− 1/M < ū(yc) < 1+ 1/M and neutral distur-
bances exist for these wavespeeds that are adjacent to unstable
disturbances. There is also an upstream sonic neutral mode at
α = 0, c = 1−1/M, responsible for the first-mode disturbance
and a downstream sonic neutral mode at α = 0, c = 1+ 1/M,
responsible for the higher-mode, or so-called Mack-mode dis-
turbances. The downstream families begin at c = 1+1/M and
remain neutral as α increases until the wavespeed decreases to
ūmax [11] (unity for non-overshoot boundary layers). These
classical inviscid modes are discussed in stronger detail else-
where (i.e. [3, 5]). For overshoot boundary layers there are
a further two inviscid neutral modes; at α = 0, c = ūmax and
a non-zero wavenumber neutral mode with a non-inflectional
wavespeed greater than unity [10]. The inviscid equations may
be solved numerically using a shooting method [4]. For damped
and neutral (ℑ(c) ≤ 0) disturbances, there is a region near the
critical point (at ū = ℜ(c) for damped disturbances) where the
inviscid equations are not valid and the integration contour must
be indented appropriately into the complex plane; below yc
when Dū(yc)> 0 (see [4]) and above yc when Dū(yc)< 0 (see
[11]).

Parallel Disturbances

In figure 2 the generalised point of inflection that exists in the
boundary layer at β = 0 has an inflectional velocity that de-
creases below the upstream sonic wavespeed 1− 1/M at ap-
proximately β = 0.1. At β = 0 this is associated with neutral
wavespeed of the first and higher modes. This generalised point
of inflection, however, will no longer guarantee a neutral mode
when the inflectional velocity is subsonic (i.e. ū(yc)< 1−1/M
or ū(yc)> 1+1/M). A similar event occurs when the boundary
layer is cooled and the first mode is completely stabilised [3].
However, the later-discovered second- and higher-mode distur-
bances are destabilised [4]. In figures 4-7 eigenvalue diagrams
are presented for the first-mode and second-mode disturbances
of Mach-3 boundary layers with increasing pressure gradient.
The growth rates ℑ(ω) are plotted along with the wavespeed
ℜ(c). The neutralisation of the first-mode disturbance contin-
ues to occur at the inflectional wavespeed cs (and not any other
inflectional velocities) up until β= 0.1; the range of wavespeeds
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Figure 4: First-mode growth rates for boundary layers with M =
3, gw = 1.2 and variable β.
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Figure 5: First-mode disturbance wavespeeds for boundary lay-
ers with M = 3, gw = 1.2 and variable β.

for which the disturbance is unstable reduces with increasing β

along with the maximum growth rate. At β = 0.1 and higher
there are no numerically determinable unstable modes adjacent
to the upstream sonic mode. The second mode (and higher
modes not significant at this Mach number) is affected in a dif-
ferent manner; the decreasing value of cs (and slightly increas-
ing ūmax) increases the range of wavespeeds for which this dis-
turbance is unstable. However, the maximum growth rate does
decrease. Up until β = 0.1 the second mode is neutralised at the
inflectional wavespeed cs at an increasing wavenumber α and
for β > 0.1 the second mode is unstable – with a monotonically
decreasing growth rate – to arbitrarily large wavenumbers. The
inviscid numerical eigenvalues presented have been confirmed
through careful calculations using the viscous stability equa-
tions at large Reynolds number.

Oblique Disturbances

For flat-plate boundary layers, first-mode disturbances are most
unstable when the disturbance travels at an oblique angle to the
boundary-layer flow, whereas second- and higher-mode distur-
bances are most unstable when the disturbance is parallel to
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Figure 6: Second-mode disturbance growth rates for boundary
layers with M = 3, gw = 1.2 and variable β.
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Figure 7: Second-mode disturbance wavespeeds for boundary
layers with M = 3, gw = 1.2 and variable β.
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Figure 8: Maximum growth rates of first-mode disturbances for
M = 3, gw = 1.2 versus β for various wave angles ψ (degrees)
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Figure 9: Maximum growth rates of second-mode disturbances
for M = 3, gw = 1.2 versus β for various wave angles ψ (de-
grees)

the boundary-layer flow [6]. In figures 8 and 9 we present the
maximum growth rates of disturbances, first mode and second
mode respectively, travelling at an angle ψ to the boundary-
layer flow. The boundary-layer profiles considered are identi-
cal to those in the previous section. For all wave angles both
the first-mode and second-mode disturbances are damped by
increasing pressure gradients. Oblique first-mode disturbances
are no longer neutralised when cs reduces below 1−1/M, how-
ever there are no unstable solutions when the generalised point
of inflection disappears at approximately β = 0.13. As with
the flat-plate boundary layer, parallel second-mode disturbances
have the largest growth rates at all values of the pressure gradi-
ent investigated.

Concluding Remarks

The inviscid, temporal stability results presented demonstrate
that in moderate Mach-number boundary layers, heating the
surface under the influence of a favourable pressure gradient
can serve to dampen and eventually prevent otherwise dominant
unstable first-mode disturbances, even for sufficiently oblique

disturbances. The maximum growth rate of second-mode dis-
turbances are also reduced by the modifications to the bound-
ary layer. Further analysis of the viscous stability is required
to estimate the effect of these changes on the overall transition
process.
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